
Théorie de la chromatographie 

Exercice n°1 

Un soluté J est engagé dans une séparation par batteries de Craig qui comporte 5 cellules. 

Donner l’expression de la masse de soluté J dans chaque cellule après 4 transferts. 

Application numérique : mJ(0,0) = 0,1 g, pJ = 0,4 puis pJ = 0,6. 

Pour chaque cas, vérifier la conservation de la masse totale. 

Dans le cas des batteries de Craig on a une expression de la distribution de la masse mJ (n, 

k) d’un soluté J dans la cellule k après n transferts :

     0 0 n kk
J J J J

n
m n,k m , p q

k
 

  
 

Ainsi, après 4 transferts, le contenu des cellules 0 à 4 est : 
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Application numérique pour mJ (0,0) = 0,1g et pJ = 0,4 : 

pJ = 0,4 d’où qJ = 1-0,4 = 0,6 
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     

     
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 
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J J J J
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J J J J

J J

4
m 4,0 m 0,0 p q 0,1 1 1 0,6 0 ,01296
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4
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1

4
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4
m 4,3 m 0,0 p q 0,1 4 0,4 0 ,6 0 ,01536
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 
      

 
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 
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      
 
 

      
 

    04 4
J J

4
0 ,0 p q 0,1 1 0 ,4 1 0 ,00256

4

0,01296 0,03456 0,03456 0,01536 0,00256 0,1 g

 
     

 

     

 

 

Application numérique pour mJ (0,0) = 0,1g et pJ = 0,6 : 

 

pJ = 0,6 d’où qJ = 1-0,6 = 0,4 
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     

 

 

Exercice n°2 

 

Lors d’une séparation par batterie de Craig, une petite quantité de soluté J reste toujours dans 

la première cellule, quels que soient le nombre de transferts et le coefficient de distribution 

entre les phases mobile et stationnaire.  
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En Supposant que VS = VM et que KD(J) = 1, quelle fraction de soluté J reste dans les deux 

premières cellules après 10 transferts ? 

 

Dans le cas des batteries de Craig on a une expression de la distribution de la masse mJ (n, 

k) d’un soluté J dans la cellule k après n transferts : 

 

     0 0 n kk
J J J J

n
m n,k m , p q

k
 

  
 

 

 

Ainsi, après 10 transferts, le contenu des cellules k = 0 et k = 1 est : 

 

cellule k = 0 :     0 10
J J J J

10
m 10 ,0 m 0,0 p q

0

 
  

 
 

 

cellule k= 1 :     1 9
J J J J

10
m 10,1 m 0,0 p q

1

 
  

   

 

Pour trouver les fractions pJ et qJ, on fait appel au facteur de rétention kJ’ : 

 

   
J S

J D J
J M

q V
k' K

p V
 

 
 

 
J S

D J
J M

q V
K 1

p V
 

 

 

J
J J J J

J

q
1 p q 1 p 0,5 q 0 ,5

p
       et       ,  

 

Application numérique : pJ = 0,5, qJ = 0,5 et la fraction est mJ(10,k) / mJ(0,0) : 

 

 
 

J 0 10 10 4
J J

J

m 10,0 10
p q 1 1 0,5 9,77 10 0,1%

m 0,0 0
 

       
 

 

 

 
 

J 1 9 9 3
J J

J

m 10,1 10
p q 10 0,5 0,5 9,77 10 1%

m 0,0 1
 

       
 
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Exercice n°3 

 

On modélise le rinçage dans un lave-linge comme un processus de distribution où la phase 

mobile est l’eau de rinçage et la phase stationnaire le linge contenu dans la machine. 

Le volume total du lave-linge est de 60 L. On suppose que le linge occupe la moitié du lave-

linge. 

 

Sachant que chaque rinçage d’une durée de 20 min avec de l’eau pure enlève 90 % de lessive 

du linge, calculer le nombre de rinçages ainsi que le temps nécessaires pour obtenir un linge 

propre (0,01 % de lessive restant). 

 

phase mobile : eau de rinçage 

phase stationnaire : linge sale 

rapport de phase : mo M
M S

st S

V V
1  et  V V 60 L

V V
     

pourcentage de lessive restante après un rinçage : Lq 10% 0,1   

pourcentage de lessive éliminée après un rinçage : Lp 90% 0,9   

 

Le lave-linge est considéré comme une batterie à une seule cellule k = 0. 

On doit calculer alors le nombre de rinçage n à effectuer pour obtenir un linge propre 

c’est-à-dire ne contenant que 0,01% de lessive. On utilise la distribution de Craig : 

 

         n kk 0 n
L L L L L L L L

n n
m n,k m 0,0 p q     m n,0 m 0,0 p q

k 0
   

     
   

 

 

 
   

L n n n 4
L L L

L

m n,0 n n!
q q q 0,01% 1 10

m 0,0 0 0! n 0 !
 

        
 

 

n 4
Lq 0,01% 1 10    

 

     
 

 
 

4 4

4
L

L

ln 1 10 ln 1 10
n ln q ln 1 10     n 4

ln 0 ,1ln q

 


 
       

 

Sachant qu’un rinçage dure 20 minutes, le temps total sera de 4×20 = 80 minutes. 
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Exercice n°4 

 

Les séparations chromatographiques sont régies par l’équation de Van Deemter. Cette 

équation exprime la hauteur à un plateau théorique H en fonction de la vitesse linéaire 

d’écoulement moyenne de la phase mobile 𝒖ഥ : H = A + B/𝒖ഥ + C𝒖ഥ. A, B et C sont des 

constantes. 

 

Esquisser le graphe H = f(𝒖ഥ). 

 

 

 

Comment doit-on faire évoluer H pour obtenir des conditions de séparation optimales ?, en 

déduire la vitesse linéaire d’écoulement moyenne optimale de la phase mobile. 

 

Le but c’est d’avoir H minimale pour obtenir un grand nombre de plateaux : 
L

H
N

  avec 

L la longueur de la colonne et N le nombre de plateaux théoriques. 

H est minimum si sa dérivée 
dH

0
du

 . 

 

   

2

2

opt

opt

d B / u d CudH dA

du du du du
dH B

C
du u

B
0 C

u

B
u

C

  


 


 



 

 

𝑢ത / cmꞏs-1 

H
 / 

cm
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Exprimer Hopt en fonction de A, B et C uniquement. Si B et C sont très petits, que vaut H ? 

Dans ce cas, de quoi dépend la performance de la séparation ? 

 

opt opt

opt

opt

opt

B
H A Cu

u

B B
H A C

CB
C

H A 2 BC

  

  

 

 

 

Si B et C sont très petits on aura : 

 

optBC 0  et  H A   

 

Dans ce cas la performance de la séparation dépend uniquement de A. Comme pA 2 d , 

alors l’efficacité de la séparation ne dépend que du diamètre des particules qui constituent 

la phase stationnaire, à savoir plus dp est petit, plus H sera petit et plus N sera grand. 

 

En HPLC, les constantes A, B et C sont fonction des paramètres suivants : A = f (dp), B = 

f(DM) et C = f(dp
2) où dp représente le diamètre des particules de la phase stationnaire et DM 

représente le coefficient de diffusion du soluté analysé dans la phase mobile. 

 

A partir de ces données, proposer un moyen (à vitesse linéaire d’écoulement moyenne, 

longueur de colonne et nature de la phase mobile constantes) pour améliorer la séparation. 

 

Pour améliorer la séparation, il faut augmenter le nombre de plateaux théoriques et donc 

diminuer H. Ne pouvant jouer sur le coefficient de diffusion DM de l’analyte dans la phase 

mobile (DM dépend de la nature de la phase mobile et de l’analyte), on ne peut jouer que 

sur le diamètre des particules de la phase stationnaire. Si on diminue ce diamètre, alors on 

diminuera H et on augmentera par la même le nombre de plateaux théoriques N. 
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En vous appuyant sur la loi de Darcy, sans faire de calcul, décrire l’influence d’une telle 

modification ? 

 

Sachant que la loi de Darcy pour l’HPLC est : 2

Lu
P

dp


  , en utilisant la même phase 

mobile (), la même colonne (longueur L constante), la même vitesse linéaire d’écoulement 

moyenne (𝒖ഥ), et une constante  (porosité interstitielle) qui varie peu, alors plus le 

diamètre des particules sera petit, plus la perte de charge sera grande et plus la séparation 

sera difficile. Il faudra alors contrecarrer ce P afin de garder la qualité de séparation. La 

qualité d’une séparation en HPLC dépend fortement de la différence entre les pressions de 

sortie et d’entrée de la colonne qui doit être la plus faible possible. 

 

Exercice n°5 

 

En général, en chromatographie en phase liquide, le terme correspondant à la diffusion 

d’Eddy est le terme prépondérant de l’équation de Van Deemter lorsque 𝒖ഥ ൌ 𝒖𝒐𝒑𝒕തതതതതത. 

 

Sachant qu’en HPLC A= 2λdp ~ 2dp pour un remplissage optimal, démontrer que Nmax = L / 

2dp. 

 

Si 𝒖ഥ ൌ 𝒖𝒐𝒑𝒕തതതതതത, on a alors : optH A 2 BC   

 

Si la diffusion d’Eddy est prépondérante alors : optBC 0  et  H A  . D’où : 

opt p pH A 2 d 2d    

 

On aura : opt
max

L L
H     H  (minimum de Van Deemter)

N N
    

 

D’où : opt p max
max p

L L
H 2d     N

N 2d
     
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Exercice n°6 

 

Une équation importante de la chromatographie liquide est l’équation de Knox, équation 

basée sur des paramètres adimensionnels. 

 

Expliquer l’intérêt d’utiliser des paramètres adimensionnels pour l’évaluation des 

performances chromatographiques en phase liquide. 

 

Pouvoir comparer la performance de colonnes dont le diamètre des particules est différent. 

 

Donner l’équation de Knox et montrer en quoi elle diffère de l’équation de Van Deemter. 

 

L’équation de Knox relie la hauteur équivalente à un plateau théorique réduite h à la 

vitesse d’écoulement réduite moyenne v de la phase mobile : 

 

/ B
h Av Cv

v
  1 3  

 

Dans cette équation la diffusion d’Eddy n’est plus une constante, elle dépend aussi de la 

vitesse d’écoulement réduite moyenne v de la phase mobile, ce qui n’est pas le cas dans 

l’équation de Van Deemter. 

 

Esquisser le graphe de l’équation de Knox. 
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Définir les paramètres suivants : longueur réduite de la colonne, hauteur équivalente à un 

plateau théorique réduite et vitesse d’écoulement moyenne réduite. 

 

La longueur réduite l représente le nombre de tranches de particules contenues dans la 

colonne. Deux colonnes ayant la même longueur réduite auront une efficacité équivalente 

si elles sont mises en œuvres avec la même vitesse réduite. La longueur réduite dépend de la 

longueur L de la colonne: 

 

p

L
l

d
  

 

La hauteur équivalente à un plateau théorique réduite h représente le nombre de couches 

de particules par plateau théorique. Cette grandeur permet de comparer entre-elles des 

colonnes remplies de particules de tailles différentes. h s’exprime en fonction de la HEPT 

H comme: 

p

H
h

d
  

 

La vitesse d’écoulement moyenne réduite 𝒗ഥ s’exprime en fonction de la vitesse linéaire 

d’écoulement moyenne 𝒖ഥ de la phase mobile, du coefficient de diffusion du soluté J dans la 

phase mobile DM(J) et du temps mort tM : 

 

     

2
p p p

M MM J M J M J

ud Ld ld
v

D t D t D
    

 

Exercice n°7 

 

Soit une colonne chromatographique HPLC, colonne A, dont les caractéristiques sont les 

suivantes : L = 150 mm, diamètre interne = 4,6 mm, taille des particules = 5 μm. 

Une chromatographie de solutés dont les coefficients de diffusion sont de 1010-9 m2ꞏs-1 est 

réalisée à 1 mLꞏmin-1. Le temps mort de la colonne est estimé à 0,5 min pour ce débit. 

 

Calculer 𝒖ഥ, Nmax et Hopt. 
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Comme : M

L
t

u
  alors : 1

M

L 15
u 0,5 cm s

t 0 ,5 60
   


 

 

Comme : max
p

L
N

2d
  alors : 

3

max 6

150 10
N 15000

2 5 10






 

 
 

 

Comme : opt
max

L
H

N
  alors : 3

opt

15
H 1 10  cm

15000
    

 

Calculer l, hopt et 𝒗𝒐𝒑𝒕തതതതതത en considérant que : 𝒖ഥ ൌ 𝒖𝒐𝒑𝒕തതതതതത. Sachant que la vitesse réduite pour une 

chromatographie efficace doit être : 𝒗𝒐𝒑𝒕തതതതതത = 3, que pouvez-vous dire sur le débit 𝒖ഥ ? 

 

3
4

6
p

L 150 10
l 3 10

d 5 10






   


 

 

5
opt

opt 6
p

H 1 10
h 2

d 5 10






  


 

 

 

2 6
opt p

opt 9
M J

u d 0 ,5 10 5 10
v 2 ,5

D 10 10

 



  
  


 

 

Comme 𝒗𝒐𝒑𝒕തതതതതത < 3 alors, on peut dire que 𝒖ഥ ് 𝒖𝒐𝒑𝒕തതതതതത, le débit dans la colonne est trop faible. 

On devrait réaliser la chromatographie à un débit supérieur à 1 mLꞏmin-1. La HEPT H 

n’est donc pas minimale et par conséquent, le nombre de plateaux théoriques à disposition 

n’est pas le nombre de plateaux théorique maximal. 

 

En vous basant sur les calculs précédents, déterminer la longueur d’une colonne 

chromatographique B dont l’efficacité est similaire à la colonne A. La colonne B dont le 

diamètre interne reste identique est constituée de particules de 2 μm de diamètre. 

 

Pour conserver l’efficacité de cette colonne, elle doit posséder une longueur réduite 

identique : 
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          4 6 2
p

p

L
l     L ld 3 10 2 10 6 10  m 60 mm

d
 

 

Calculer Nmax de cette nouvelle colonne. Que pouvez-vous en conclure ? 

 

Comme : max
p

L
N

2d
  alors : 

3

max 6

60 10
N 15000

2 2 10






 

 
 

 

On peut s’apercevoir que le nombre de plateaux théoriques maximal est le même, les 

colonnes A et B ont donc bien la même efficacité. 

 

Calculer Hopt. 

 

Comme : opt
max

L
H

N
  alors : 4

opt

6
H 4 10  cm

15000
    

 

Calculer 𝒖𝒐𝒑𝒕തതതതതത pour opérer avec 𝒗𝒐𝒑𝒕തതതതതത déterminé précédemment. 

 

 

 
9

opt M Jopt p 2 -1 -1
opt opt 6

pM J

v Du d 2,5 10 10
v     u 1,25 10  m s 1,25 cm s

D d 2 10






 
        


 

 

Calculer le temps mort de cette nouvelle colonne. La valeur du temps mort vous paraît-elle 

plausible ? 

 

M

L 6
t 4,8 s 0,08 min

u 1,25
     

 

La valeur trouvée est plus petite que celle obtenue avec une colonne plus grande dont le 

débit est plus petit, c’est donc tout à fait plausible. 
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Exercice n°8 

 

Soit une colonne chromatographique HPLC, colonne A, dont les caractéristiques sont les 

suivantes : L = 150 mm, diamètre interne = 4,6 mm, taille des particules = 5 μm. 

 

Quelle doit-être la vitesse linéaire d’écoulement moyenne 𝒖ഥ de la phase mobile, pour 

chromatographier le phénétol (coefficient de diffusion : DM = 0,4910-9 m2ꞏs-1) et une 

macromolécule (coefficient de diffusion : DM = 6,210-11 m2ꞏs-1) avec une vitesse 

d’écoulement moyenne réduite optimale : 𝒗𝒐𝒑𝒕തതതതതത = 3 ? 

 

 

     
opt M Jopt p

opt opt
pM J

v Du d
v u

D d
    

 

       


   


 
      



9
4 1 5 1

opt opt6

3 0 ,49 10
u phénétol 2,94 10 m s , u macromolécule 3,72 10 m s

5 10
 

               2 1 3 1
opt optu phénétol 2,94 10 cm s , u macromolécule 3,72 10 cm s  
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